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ABSTRACT 

 

In this paper, we solved parabolic partial differential equations in three-dimensions using 

the finite difference method such as Alternating Direction Implicit method. Here we solved heat 

equation using Alternating Direction Implicit method and also we applied fuzzy concepts to solve 

heat equation using this Alternating Direction Implicit method. 
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I.INTRODUCTION 

 

Partial differential equations form the basis of very many mathematical models of physical, 

chemical and biological phenomena, and more recently they spread into economics, financial 

forecasting, image processing and other fields [9]. Parabolic partial differential equations in three 

space dimensions with over-specified boundary data feature in the mathematical modeling of many 

important phenomena [3]. 

 

Calculation of the solution of fuzzy partial differential equations is in general very difficult. 

We can find the exact solution only in some special cases. The theory of fuzzy differential 

equations has attracted much attention in recent times because this theory represents a natural way 

to model dynamical systems uncertainty. The concept of the fuzzy derivative was first introduced 

by Chang and Zadeh [1]; it was followed up by Dubois and prade [4], who used the extension 

principle in their approach. The study of fuzzy differential equations has been initiated as an 

independent subject in conjunction with fuzzy valued analysis[2] and [10] and set-valued 

differential equations. 

 

In this paper, we apply fuzzy to solve Alternating direction Implicit method with the parabolic 

partial differential equations in three dimensions. 
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II. PRELIMINARIES 
 

The basic definition of fuzzy numbers is given in [5] 
 

We denote the set of all real numbers by ℝ and the set of all fuzzy numbers on ℝ is indicated by 

ℝ𝐹. 

A fuzzy number is mapping u : ℝ → [0,1] with the following properties: 
 

(a) u is upper-semicontinuous, 

(b) u is fuzzy convex, i.e., u(λ x+(1-λ)y)≥ min {u(x), u(y)} for all x, y∈ ℝ , λ∈ [0,1], 

(c) u is normal, i.e., ∃𝑥0 ∈ ℝ for which u(𝑥0) = 1, 

(d) Supp u = { x∈ ℝ | 𝑢(𝑥) > 0} is the support of the u, and its closure cl(supp u) is  compact. 

Definition 2.1[5] 

An arbitrary fuzzy numbers represented by an ordered pair of functions (𝑢(𝛼), 𝑢(𝛼)), 

0≤ 𝛼 ≤ 1 that, satisfies the following requirements: 

  𝑢(𝛼) is a bounded left continuous non decreasing function over [0,1], with respect to any 

𝛼. 

 𝑢(𝛼) is a bounded left continuous non increasing function over [0,1], with respect to any 

𝛼. 

  𝑢(𝛼) ≤ 𝑢(𝛼), 0≤ 𝛼 ≤ 1 
 
Then the 𝛼-level set [𝑢]𝛼 of a fuzzy set u on ℝ is defined as: 

[𝑢]𝛼 = {𝑥 ∈ ℝ; 𝑢(𝑥) ≥ 𝛼}, for each 𝛼 ∈ (0,1], 
 

And for 𝛼 = 0 
 

[𝑢]0 = ⋃ 𝛼∈(0,1][𝑢]𝛼 

 
Where 𝐴 denotes the closure of A. 
 

For u, v ∈ ℝ𝐹 and λ∈ ℝ the sum u+v and the product λu are defined by [𝑢 + 𝑣]𝛼 = [𝑢]𝛼+[𝑣]𝛼, 

[λ𝑢]𝛼 = λ[𝑢]𝛼, ∀𝛼 ∈ [0,1] where [𝑢]𝛼+[𝑣]𝛼 means the usual addition of two intervals (subsets) of ℝ 

and λ[𝑢]𝛼 means the usual product between a scalar and a subset of 

ℝ. 
 

The metric structure is given by the Hausdroff distance D: ℝ𝐹 × ℝ𝐹 → ℝ+ ∪ {0}, 

D(u,v) = 𝑠𝑢𝑝𝛼∈(0,1] max{|𝑢(𝛼) − 𝑣(𝛼)|, |𝑢(𝛼) − 𝑣(𝛼)|}. 
 

Where [𝑢]𝛼 = [𝑢(𝛼), 𝑢(𝛼)] and [𝑣]𝛼 = [𝑣(𝛼), 𝑣(𝛼)]. 
  

 

(ℝ𝐹, 𝐷) is a complete metric space and the following properties are well known: D(u+w, v+w) = 

D(u, v) ∀𝑢, 𝑣, 𝑤 ∈ ℝ𝐹, 

D(ku,kv) = |k |D(u, v) ∀𝑘 ∈ ℝ, 𝑢, 𝑣 ∈ ℝ𝐹, 
 
D(u+v, w+e)≤ D(u, w) + D(v,e) ∀𝑢, 𝑣, 𝑤, 𝑒 ∈ ℝ𝐹. 
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Model of equation [8]: 

 

In the case of three dimensions, the mathematical model is such an initial and boundary value 

problem is given by [8] as follows: 

 
𝜕𝑢̃  

=  
𝜕2𝑢̃ 

+ 
𝜕2𝑢̃  

+ 
𝜕2𝑢̃

, (0≤ 𝑥, 𝑦, 𝑧 ≤ 1, 𝑡 ≥ 0) ………..….(1) 
𝜕𝑡 𝜕𝑥2 𝜕𝑦2 𝜕𝑧2 

 

𝑢̃(𝑥, 𝑦, 𝑧, 0) = 𝑔(𝑥, 𝑦, 𝑧), (0≤ 𝑥, 𝑦, 𝑧 ≤ 1) ..………….. (2) 

 

𝑢̃(0, 𝑦, 𝑧, 𝑡) =  𝑓1(𝑦, 𝑧, 𝑡),  𝑢̃(1, 𝑦, 𝑧, 𝑡) = 𝑓2(𝑦, 𝑧, 𝑡), (0≤ 𝑦, 𝑧 ≤ 1, 𝑡 ≥ 0)  .……..…… (3) 

 

𝑢̃(𝑥, 0, 𝑧, 𝑡) =  𝑓3(𝑥, 𝑧, 𝑡),  𝑢̃(𝑥, 1, 𝑧, 𝑡) = 𝑓4(𝑥, 𝑧, 𝑡), ( 0≤ 𝑥, 𝑧 ≤ 1, 𝑡 ≥ 0).   ……..…… (4) 

 

𝑢̃(𝑥, 𝑦, 0, 𝑡) =  𝑓5(𝑥, 𝑦, 𝑡),  𝑢̃(𝑥, 𝑦, 1, 𝑡) = 𝑓6(𝑥, 𝑦, 𝑡), ( 0≤ 𝑥, 𝑦 ≤ 1, 𝑡 ≥ 0   ...…...…… (5) 

 

Where 𝑢̃(𝑥, 𝑦, 𝑧, 𝑡) denoting temperature or concentration of chemical, while g,  𝑓1,  𝑓2, 𝑓3,  𝑓4,  𝑓5 and 

𝑓6 are known functions and heat transferred in three dimension system of Length L, Width  W and 

Depth D with grid points in cubic. 

III. FUZZY ALTERNATING DIRECTION IMPLICIT METHOD 
 

The alternating direction implicit method was first suggested by Douglas, Peaceman and 

Richard for solving the heat equation in two spatial variables and alternating direction implicit 

methods have proved valuable in the approximation of the solutions of parabolic and elliptic 

differential equations in two and three variables [6,7] 

In the ADI approach, the finite difference equations are written in terms of quantities at 

three x levels. However three different finite difference approximations are used alternately, one
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 𝑢 ) 

to advance the calculations from (n+1) plane to the (n+2) plane and the third to advance the 

calculations from (n+2) plane to the (n+3) plane [8] 

Assume Ũ is a fuzzy function of the independent crisp variables x and t. subdivided the x-t 

plane into sets of equal rectangles of sides ∆x, ∆y, ∆z, ∆t by equally spaced grid lines parallel to Ox 

[12] 

Denote the parametric for of fuzzy number, Ũ𝑖,𝑗 as follows Ũ𝑖,𝑗 = ( U𝑖,𝑗, Ui,j) 

Then by Taylor’s theorem and definition of standard difference 
 

(D𝑥 D𝑥 ) Ũ𝑖,𝑗 = ((D𝑥 D𝑥 )Ũ𝑖,𝑗 (D𝑦 D𝑦 ) Ũ𝑖,𝑗 (D𝑧 D𝑧 ) Ũ𝑖,𝑗) 
  

 

Then, we advance th3e solution of the parabolic partial differential equation in three dimensions 

from the nth plane to (n+1)th plane by replacing 𝜕
2𝑢̃  

by implicit finite difference approximation 
𝜕𝑥2 

at the (n+1)th plane. 

Similarly, 𝜕
2𝑢̃ 

and 𝜕
2𝑢̃  

are replaced by an explicit finite difference approximation at the nth plane. 
𝜕𝑦2 𝜕𝑧2 

With these approximation eq(1) in pa rabolic model can be written as 
 

 𝑢𝑛+1−𝑢
𝑛

  𝑢𝑛+1 −2𝑢
𝑛+1

+ 𝑢𝑛+1
 𝑢

𝑛 
−2𝑢𝑛 +𝑢

𝑛
 

 
 

 𝑢𝑛 −2𝑢
𝑛 

+ 𝑢𝑛
 

   𝑖,𝑗,𝑘 𝑖,𝑗,𝑘 =  𝑖−1,𝑗,𝑘 𝑖,𝑗,𝑘 𝑖+1,𝑗,𝑘 
+

  𝑖,𝑗−1,𝑘 𝑖,𝑗,𝑘 𝑖,𝑗+1,𝑘 +  𝑖,𝑗,𝑘−1 𝑖,𝑗,𝑘 𝑖,𝑗,𝑘+1 …………..(6) 
∆𝑡 (∆𝑥)2 (∆𝑦)2 (∆𝑧)2 

 

We set (∆x=∆y=∆z)= h and ∆t=k then we have a square and multiply equation (6) by ∆t then we get 
 

𝑢𝑛+1 − 𝑢
𝑛 

=  𝑘  (𝑢𝑛+1 − 2𝑢
𝑛+1 

+ 𝑢𝑛+1 + 𝑢
𝑛 

− 2𝑢𝑛 + 𝑢
𝑛 

+𝑢𝑛 − 2𝑢
𝑛 

+ 
   𝑖,𝑗,𝑘 𝑖,𝑗,𝑘 ℎ2 𝑖−1,𝑗,𝑘 𝑖,𝑗,𝑘  𝑖+1,𝑗,𝑘 𝑖,𝑗−1,𝑘    𝑖,𝑗,𝑘 𝑖,𝑗+1,𝑘 𝑖,𝑗,𝑘−1 

𝑛 
𝑖,𝑗,𝑘+1 

𝑖,𝑗,𝑘 

 

Let r = 𝑘 
ℎ2 

, we get 
 

 𝑢𝑛+1 − 𝑢
𝑛 

= 𝑟(𝑢𝑛+1 − 2𝑢
𝑛+1 

+ 𝑢𝑛+1 ) + 𝑟(𝑢
𝑛 

− 2𝑢𝑛 + 𝑢
𝑛 

) 𝑖,𝑗,𝑘 𝑖,𝑗,𝑘 𝑖−1,𝑗,𝑘 𝑖,𝑗,𝑘 𝑖+1,𝑗,𝑘 𝑖,𝑗−1,𝑘 𝑖,𝑗,𝑘 𝑖,𝑗+1,𝑘 
 

+ 𝑟(𝑢𝑛 − 2𝑢
𝑛 

+ 𝑢𝑛 ) 

 
And 

𝑖,𝑗,𝑘−1 𝑖,𝑗,𝑘 𝑖,𝑗,𝑘+1 

 

𝑢   𝑛+1 − 𝑟(𝑢   𝑛+1 − 2𝑢
𝑛+1  

+ 𝑢   𝑛+1 ) =  𝑢
𝑛 

+  𝑟(𝑢
𝑛 

− 2𝑢𝑛 + 𝑢
𝑛 

) 𝑖,𝑗,𝑘 𝑖−1,𝑗,𝑘 𝑖,𝑗,𝑘 𝑖+1,𝑗,𝑘 𝑖,𝑗,𝑘 𝑖,𝑗−1,𝑘 𝑖,𝑗,𝑘 𝑖,𝑗+1,𝑘 
 

+ 𝑟(𝑢𝑛 − 2𝑢
𝑛 

+ 𝑢𝑛 ) 
𝑖,𝑗,𝑘−1 𝑖,𝑗,𝑘 𝑖,𝑗,𝑘+1 
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We simply and rearrange the above equation and we get 

-r 𝑢𝑛+1 + (1 + 2𝑟)𝑢
𝑛+1  

− 𝑟𝑢   𝑛+1 = (1 − 4𝑟)𝑢
𝑛 

+  𝑟(𝑢
𝑛 

+ 𝑢
𝑛 

) 
𝑖−1,𝑗,𝑘 𝑖,𝑗,𝑘 𝑖+1,𝑗,𝑘 𝑖,𝑗,𝑘 𝑖,𝑗−1,𝑘 𝑖,𝑗+1,𝑘 
 

+ 𝑟(𝑢𝑛 − 2𝑢
𝑛 

+ 𝑢𝑛 ) ..…......……(7) 𝑖,𝑗,𝑘−1 𝑖,𝑗,𝑘 𝑖,𝑗,𝑘+1 
 

Also,  we  advance  the  solution  from  the(  n+1)th  plane  to  (n+2)th  plane  by  replacing  𝜕
2𝑢̃   

by 
𝜕𝑦2 

implicit finite difference approximation at (n+2)th plane. 

Similarly, 𝜕
2𝑢̃  

and 𝜕
2𝑢̃  

are replaced by an explicit difference approximation at the (n+1)th plane. 
𝜕𝑥2 𝜕𝑧2 

With these approximation equation (1) in parabolic model becomes 
 

 𝑢𝑛+2−𝑢
𝑛+1 

 𝑢𝑛+1    −2𝑢
𝑛+1

+𝑢𝑛+1 𝑢
𝑛+2    

−2𝑢𝑛+2+𝑢
𝑛+2 

 𝑢𝑛+1 −2𝑢
𝑛+1

+ 𝑢𝑛+1
 

   𝑖,𝑗,𝑘 𝑖,𝑗,𝑘  =  𝑖−1,𝑗,𝑘 𝑖,𝑗,𝑘 𝑖+1,𝑗,𝑘 
+

  𝑖,𝑗−1,𝑘 𝑖,𝑗,𝑘 𝑖,𝑗+1,𝑘 +  𝑖,𝑗,𝑘−1 𝑖,𝑗,𝑘 𝑖,𝑗,𝑘+1 ….…………..(8) 
∆𝑡 (∆𝑥)2 (∆𝑦)2 (∆𝑧)2 

 

We set (∆x=∆y=∆z) = h and ∆t=k then we have a square region and multiply equation (8) by ∆t 

then we get, 
 

𝑢𝑛+2 − 𝑢
𝑛+1 

= 
𝑘
 (𝑢𝑛+1 − 2𝑢

𝑛+1  
+ 𝑢𝑛+1 + 𝑢

𝑛+2 
− 2𝑢𝑛+2 + 𝑢

𝑛+2
 

    𝑖,𝑗,𝑘 𝑖,𝑗,𝑘 ℎ2    𝑖−1,𝑗,𝑘 𝑖,𝑗,𝑘   𝑖+1,𝑗,𝑘 𝑖,𝑗−1,𝑘    𝑖,𝑗,�� 𝑖,𝑗+1,𝑘 

 

+𝑢𝑛+1 − 2𝑢
𝑛+1 

+ 𝑢𝑛+1 ) 

 
Let r = 𝑘 

ℎ2 

 

we get, 

𝑖,𝑗,𝑘−1 𝑖,𝑗,𝑘 𝑖,𝑗,𝑘+1 

 

 𝑢𝑛+2 − 𝑢
𝑛+1  

= 𝑟(𝑢   𝑛+1 − 2𝑢
𝑛+1  

+  𝑢𝑛+1 ) + 𝑟(𝑢
𝑛+2 

− 2 𝑢𝑛+2 + 𝑢
𝑛+2 

) 
𝑖,𝑗,𝑘 

 

And 

𝑖,𝑗,𝑘 𝑖−1,𝑗,𝑘 𝑖,𝑗,𝑘 𝑖+1,𝑗,𝑘 𝑖,𝑗−1,𝑘 𝑖,𝑗,𝑘 𝑖,𝑗+1,𝑘 

 

 𝑢𝑛+2  − 𝑟(𝑢
𝑛+2 

− 2𝑢𝑛+2  + 𝑢
𝑛+2 

) =  𝑢
𝑛+1  

+  𝑟(𝑢   𝑛+1 − 2𝑢
𝑛+1  

+  𝑢𝑛+1 ) 𝑖,𝑗,𝑘 𝑖,𝑗−1,𝑘 𝑖,𝑗,𝑘 𝑖,𝑗+1,𝑘 𝑖,𝑗,𝑘 𝑖−1,𝑗,𝑘 𝑖,𝑗,𝑘 𝑖+1,𝑗,𝑘 
 

+ 𝑟(𝑢𝑛+1 − 2𝑢
𝑛+1 

+ 𝑢𝑛+1 ) 
𝑖,𝑗,𝑘−1 

 

We simplify and rearrange the above equation and we get, 

𝑖,𝑗,𝑘 𝑖,𝑗,𝑘+1 

 

-r𝑢
𝑛+2 

+ (1 + 2𝑟)𝑢   𝑛+2 − 𝑟𝑢
𝑛+2 

= (1 − 4𝑟)𝑢
𝑛+1  

+  𝑟( 𝑢𝑛+1 +  𝑢𝑛+1 ) 
𝑖,𝑗−1,𝑘 𝑖,𝑗,𝑘 𝑖,𝑗+1,𝑘 𝑖,𝑗,𝑘 𝑖−1,𝑗,𝑘 𝑖+1,𝑗,𝑘 
 

+ 𝑟(𝑢𝑛+1 + 𝑢𝑛+1 ) ...……………(9) 
𝑖,𝑗,𝑘−1 𝑖,𝑗,𝑘+1 
 

Now, we advance the solution from the( n+2)th plane to (n+3)th plane by replacing 𝜕
2𝑢̃

 
𝜕𝑥2 

and 𝜕
2𝑢̃
by explicit finite difference approximation at (n+2)th plane. 

𝜕𝑦2 
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Then 
𝜕2𝑢̃

 
𝜕𝑧2 

by an implicit finite difference approximation at the (n+3)th plane. With these 

approximation equation (1) in parabolic model becomes, 
 

𝑢
𝑛+3

−𝑢𝑛+2
  𝑢𝑛+2 −2𝑢

𝑛+2
+ 𝑢𝑛+2

 
𝑢

𝑛+2 
−2𝑢𝑛+2+𝑢

𝑛+2 
 

 

 𝑢𝑛+3 −2𝑢
𝑛+3

+ 𝑢𝑛+3
 

   𝑖,𝑗,𝑘 𝑖,𝑗,𝑘 =    𝑖−1,𝑗,𝑘 𝑖,𝑗,𝑘 𝑖+1,𝑗,𝑘 
+

  𝑖,𝑗−1,𝑘 𝑖,𝑗,𝑘 𝑖,𝑗+1,𝑘 +  𝑖,𝑗,𝑘−1 𝑖,𝑗,𝑘 𝑖,𝑗,𝑘+1 ………….(10) 
∆𝑡 (∆𝑥)2 (∆𝑦)2 (∆𝑧)2 

 

Put ∆𝑡 = 𝑘 and (∆x=∆y=∆z) = h 
 

𝑢
𝑛+3

−𝑢𝑛+2
  𝑢𝑛+2 −2𝑢

𝑛+2
+ 𝑢𝑛+2

 
𝑢

𝑛+2 
−2𝑢𝑛+2+𝑢

𝑛+2 
 

 

 𝑢𝑛+3 −2𝑢
𝑛+3

+ 𝑢𝑛+3
 

   𝑖,𝑗,𝑘 𝑖,𝑗,𝑘  =   𝑖−1,𝑗,𝑘 𝑖,𝑗,𝑘 𝑖+1,𝑗,𝑘 
+

  𝑖,𝑗−1,𝑘 𝑖,𝑗,𝑘 𝑖,𝑗+1,𝑘 +  𝑖,𝑗,𝑘−1 𝑖,𝑗,𝑘 𝑖,𝑗,𝑘+1 

𝑘 (ℎ)2 (ℎ)2 (ℎ)2 
 

Multiply equation (10) by k when (∆x=∆y=∆z) = h then, we have a square region and we get 

𝑢
𝑛+3  

− 𝑢 𝑛+2  =
 𝑘 

(𝑢𝑛+2 − 2𝑢
𝑛+2  

+ 𝑢 𝑛+2 +𝑢
𝑛+2 

− 2𝑢𝑛+2 + 𝑢
𝑛+2 

+ 𝑢𝑛+3
 𝑖,𝑗,𝑘 𝑖,𝑗,𝑘 ℎ2 𝑖−1,𝑗,𝑘 𝑖,𝑗,𝑘 𝑖+1,𝑗,𝑘 𝑖,𝑗−1,𝑘 𝑖,𝑗,𝑘 𝑖,𝑗+1,𝑘 𝑖,𝑗,𝑘−1 

 

−2𝑢
𝑛+3 

+ 𝑢𝑛+3 ) 

 
Let r = 𝑘 

ℎ2 

 

we get, 

𝑖,𝑗,𝑘 𝑖,𝑗,𝑘+1 

 

𝑢
𝑛+3  

− 𝑢   𝑛+2 = 𝑟(𝑢   𝑛+2 − 2𝑢
𝑛+2  

+  𝑢𝑛+2 ) + 𝑟(𝑢
𝑛+2 

− 2𝑢𝑛+2 + 𝑢
𝑛+2 

) 𝑖,𝑗,𝑘 𝑖,𝑗,𝑘 𝑖−1,𝑗,𝑘 𝑖,𝑗,𝑘 𝑖+1,𝑗,𝑘 𝑖,𝑗−1,𝑘 𝑖,𝑗,𝑘 𝑖,𝑗+1,𝑘 
 

+ 𝑟(𝑢𝑛+3 − 2𝑢
𝑛+3 

+ 𝑢𝑛+3 ) 

 
And 

𝑖,𝑗,𝑘−1 𝑖,𝑗,𝑘 𝑖,𝑗,𝑘+1 

 

𝑢
𝑛+3  

− 𝑟(𝑢𝑛+3 − 2𝑢
𝑛+3 

+ 𝑢𝑛+3 ) = 𝑢𝑛+2+ 𝑟(𝑢𝑛+2 − 2𝑢
𝑛+2 

+ 𝑢𝑛+2 ) + 
𝑖,𝑗,𝑘 𝑖,𝑗,𝑘−1 𝑖,𝑗,𝑘 𝑖,𝑗,𝑘+1 𝑖,𝑗,𝑘 𝑖−1,𝑗,𝑘 𝑖,𝑗,𝑘 𝑖+1,𝑗,𝑘 
 

𝑟(𝑢
𝑛+2 

−  2𝑢𝑛+2 + 𝑢
𝑛+2 

) 
 

We simplify and rearrange the above equation we get, 

𝑖,𝑗−1,𝑘 𝑖,𝑗,𝑘 𝑖,𝑗+1,𝑘 

 

-r𝑢𝑛+3 +  (1 + 2𝑟)𝑢
𝑛+3 

−r𝑢𝑛+3 =  (1 − 4𝑟)𝑢
𝑛+2  

+ 𝑟(𝑢𝑛+2 + 𝑢𝑛+2 ) 𝑖,𝑗,𝑘−1 𝑖,𝑗,𝑘 𝑖,𝑗,𝑘+1 𝑖,𝑗,𝑘 𝑖−1,𝑗,𝑘 𝑖+1,𝑗,𝑘 
 

+ 𝑟(𝑢
𝑛+2 

+ 𝑢
𝑛+2 

) ………….(11) 
𝑖,𝑗−1,𝑘 𝑖,𝑗+1,𝑘 
 

Expressed from the above equations (7), (9) and (11) by the system AX=B 
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2, j ,k 

3, j ,k 

n 

n 

1  2r  r   0 0  u
n1  

 r 1  2r  r    0 0 0   
2, j ,k 






  
n1 3, j ,k  0  r 










 

1  2r  r 
 

 

 
    

 

 r 

 

 

 

 



1  2r  r 

  
 
 
 
 
 
 
 
 
 

0  

n1 
4, j ,k   
 


 




 

 
0 0 

 u 
n1 

       r 1  2r  r   m12, j ,k 



  u
n1 




 0 0 0     r 1  2r m11, j ,k 






 (1  4r)u
n

 

 
(1  4r)u

n
 







= 







n 

2, j 1,k n 

3, j 1,k 

n 

2, j 1,k n 

3, j 1,k 
















n 

2, j ,k 1 

n 

3, j ,k 1 

2, j ,k 1 ] 


3, j ,k 1 ] 













(1  4r)u
n
  r[u

n
  u

n
  u

n
  u

n 


 m11, j ,k m11, j 1,k m11, j 1,k m11, j ,k 1 m11, j ,k 1 ]

u 

u 

 r[u 

 r[u 

 u 

 u 

 u 

 u 

 u 

 u 















0 



0  r 1  2r 



 r 



 


  



         
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

Similarly, applying the above procedure with remainder of equations 
 

These systems are of a tridiagonal linear system of equations and can be solved by the Gauss 

elimination. 
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